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LECTURE 4
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1. What is nonlinear TSA?

Chapter 2: From �rst principles to phenomenology (bottom up
approach)

This chapter: From phenomenology to the system (top down
approach)
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1. What is nonlinear TSA?

Working hypothesis: Nature is deterministic, nonlinear, and
dissipative.

Picture: Data are measurements at successive times of a system
evolving usually in continuous time,

t 7! x(t) 2 Ω ===> sn = s(x(tn))

where s : Ω ! R is called the measurement function and tn the
measurement times.

Scope: Extract information from the data

But there are quite a few practical issues.
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1. What is nonlinear TSA?

Examples of time series.

Meteorological observations (temperature, pressure, humidity, ...)

Financial data (trading price, market averages, exchange rates, ...)

Biomedical records (EEG, ECG, epidemiological data, ...)
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1. What is nonlinear TSA?

Procedure.

1 Reconstruction of the state space
2 Noise reduction
3 Test stationarity and determinism
4 Characterize the reconstructed attractor
5 Check the validity of the conclusions (surrogate data)

Remark. The exact order depends on whether the methods need a
reconstructed state space.
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2. Practical issues

Time series analysis involves a number of practical issues.

1) Sampling and delay time.

In practice, data are sampled at a constant sampling frequency 1/∆t, i.e.,

s0, s1, ..., sn, ... = s(x(0)), s(x(∆t)), ..., s(x(n∆t)), ...

where ∆t is the sampling time, and n∆t � tn are the measurement times.

∆t should be much smaller than the variation scale of x(t).

A better option:

s0, sτ, ..., snτ, ... = s(x(0)), s(x(τ∆t)), ..., snτ = s(x(nτ∆t)), ...

The parameter τ � 1 is called the lag or delay time.
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2. Practical issues

2) Finiteness.

Real-world time series are �nite �but most quantities (entropies, λ,
dimensions, etc.) involve in�nite limits!

Remedies: Produce as many data as possible, use alternative estimators,
use �nite-size correction terms, ...

General rule: It su¢ ces to obtain the scaling behavior.
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2. Practical issues

3) Data contamination

Any error in the determination of the states.

If the error is propagated by the dynamic: dynamical or multiplicative
noise

If the error is not propagated by the dynamic: observational or
additive noise

Modelling additive noise.

sn = s(x(n∆t)) +wn

where (wn)n�0 is white noise (i.e., an i.i.d. random process).

One can use noise-reduction techniques.
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2. Practical issues

4) Stationarity.

Stationarity means hat the statistical properties (averages, deviations, etc.)
do not depend on which part of the time series I am considering.

Causes of nonstationarity.

If the system is random: the process is nonstationary.

If the system is deterministic: transients, change of parameters.

Time series too short to capture the longest characteristic time scale.
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3. Conventional linear methods

Conventional linear methods are useful for some basic purposes, like
checking stationarity or discriminating randomness from chaoticity.

1) Stationarity with 1st and 2nd order statistics

If x = x1, ..., xN is a nonstationary time series, then its mean

hxi = 1
N

N

∑
n=1

xn,

and/or the standard deviation

σ =

vuut 1
N� 1

N

∑
n=1
(xn � hxi)2

change with N.
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3. Conventional linear methods

Test.

1 Calculate hxi and σ for the 1st half (0 � n � bN/2c)
2 Calculate hxi and σ for the 2nd half (bN/2c+ 1 � n � N)
3 If the means of the two halves di¤er by more than a few standard
errors for each half (σ/

p
N/2), then stationarity is a problem.

Other possibility: Plot a histogram of the probability distribution p(x)
(number of bins �

p
N). p(x) should remain approximately constant for

di¤erent x�s if the data source is stationary.
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3. Conventional linear methods

2) Determinism with Fourier analysis
Assumption: x = x1, ..., xN can be represented by a superposition of sines
and cosines of various amplitudes and frequencies.

Fundamental frequency : f0 = 1/N
Highest frequency : fc = 1/2 (Nyquist frequency)
Frequencies of the harmonics: fν = ν/N = νf0 (1 � ν � N/2)

xn '
a0

2
+

N/2

∑
ν=1

�
aν cos

2πνn
N

+ bν sin
2πνn

N

�
Amplitudes:

aν =
2
N

N

∑
n=1

xn cos
2πνn

N
, bν =

2
N

N

∑
n=1

xn sin
2πνn

N
.
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3. Conventional linear methods

De�nition (Power spectral density). The power S(f ) at frequency νf0 is

Sν = a2
ν + b2

ν.

Quasiperiodic signals have a �nite number of sharp spectral peaks.

Chaotic signals have a continuous (or �broadband�) spectrum, perhaps
with some embedded peaks.

But random noise has also a continuous spectrum.

If the power spectrum diverges as f�α , the time series must be
considered nonstationary.
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3. Conventional linear methods

Power spectrum of a chaotic signal

x ­ c o m p o n e n t
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Figure. Power spectrum of a time series generated with the Rössler
oscillator.
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3. Conventional linear methods

De�nition. The autocorrelation function of a stationary time series
x = x1, ..., xN,

G(k) ' ∑N�k
n=1 (xn � hxi)(xn+k � hxi)

∑N�k
n=1 (xn � hxi)2

,

measures how strongly on average each data point is correlated with one k
time steps away (0 � k � N� 1).

G(0) = 1
G(k) = 1 for perfect correlation
G(k) = �1 for perfect anticorrelation
G(k) = 0 for uncorrelated data
k is called the lag.
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3. Conventional linear methods

Facts.

Random processes have decaying autocorrelations but the decay rate
depends on the properties of the process.

Autocorrelations of chaotic signals decay exponentially with increasing
lag.
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3. Conventional linear methods

Theorem (Wiener-Khinchin). The Fourier transform of G(k) is the power
spectrum.

Sν = G(0) +G(K) cos
2πνK

N
+ 2

K�1

∑
k=1

G(k) cos
2πνk

N
,

where K is the maximum k, which should be taken about N/4.
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4. State-space reconstruction

Assumption. s0, s1, ..., sn, ... has been obtained from a deterministic
system evolving on an attractor:

sn = s(x(n0 + nτ)∆t),

where

s : Ω ! R is the measurement function,

x(t) is the time evolution of the system
∆t is the sampling time
τ is the delay time

n0 allows for removing transients
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4. State-space reconstruction

Comments.

If the system is deterministic, sn+1 = ϕ(sn, sn�1, ...), but noise can
blur this relation.

The plots sn+1 vs sn, sn�1, ... are called a return maps.
The underlying dynamical system (Ω, f ) is not known.
If f is dissipative, dimension of the attractor < dimension of Ω.
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4. State-space reconstruction

The state space reconstruction allows to construct a new space Ωnew with
an equivalent attractor, i.e.,

1 every point in Ωnew maps to a unique point by the dynamic,
2 the corresponding attractors in Ω and Ωnew have the same λ and
dimensions.

The change of coordinates between Ω and Ωnew is called an embedding.
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4. State-space reconstruction

Theorem (Takens). Given a time series

sn0 , sn0+τ, sn0+2τ, ..., sn0+kτ, ...,

the time-delay vectors,

s(n) = (sn�(m�1)τ, ..., sn�τ, sn),

constitute an adequate embedding provided

m � b2D0c+ 1.

where D0 is the box-counting dimension of the attractor.

The parameter m is called the embedding dimension m.
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4. State-space reconstruction

Illustration1

1C.J. Stam, Clin. Neurophys. 116 (2005) 226
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4. State-space reconstruction

The state-space reconstruction has two parameters:

1 The embedding dimension m (all we know is m � b2D0c+ 1)
2 The delay time τ

How to choose them?
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4. State-space reconstruction

Choosing m: False nearest neighbors.

1 For each sn �nd an sl such that their distance in the reconstructed
state space,

Rn(m) =
q
(sl � sn)2 + (sl�τ � sn�τ)2 + ...+ (sl�(m�1)τ � sn�(m�1)τ)2

is minimum. sl is call the nearest neighbor of sn.
2 Calculate Rn(m+ 1). If Rn(m+ 1)� Rn(m), then xn and xl are
false neighbors. Criterion for falseness:

jsl�mτ � sn�mτj
Rn(m)

& 15

3 Sample the time series and plot the fraction of false nearest neighbors.
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4. State-space reconstruction

Illustration2.

2M. Perc, Eur. J. Phys. 26 (2005) 757
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4. State-space reconstruction

Choosing τ: Minimum mutual information.

If τ is too small, the reconstructed attractor is stretched out along
the diagonal of the embedding space.

If τ is too large, the reconstructed attractor is excessively folded.
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4. State-space reconstruction

Recommended method: Use the �rst minimum of the mutual
information,

I(τ) =
N

∑
i=1

N

∑
j=1

pij(τ) log pij(τ)� 2
N

∑
i=1

pi ln pi,

N is the number of bins in [smin, smax]

pi is the probability that xn is in bin i
pij(τ) is the probability that sn is in bin i and sn+τ is in bin j

The size of the bins is not critical as long as they are su¢ ciently small.
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5. Noise reduction

There are noise reduction algorithms based on time-delay embedding.

Noisy measurements:
sn = xn + ζn

where ζn is supposed to be a rv with fast decaying autocorrelation and no
correlation with xn.

σ =

rD
ζ2
E
is called the noise amplitude or the noise level. σ can be

estimated from a plot of the data or a correlation sum.
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5. Noise reduction

Method (nonlinear �ltering). Let

s(n) = (sn�(m�1)τ, ..., sn�τ, sn)

be the embedding vectors.Then replace the middle coordinate sn�bm/2cτ
by the average middle coordinate of neighboring points:

ŝn+bm/2cτ =
1

jBε(s(n))j ∑
s(k)2Bε(s(n))

sn�bm/2c,

where Bε(s(n)) is the m-dimensional ball of radius ε centered at s(n), and
jBε(s(n))j is the number of points in it.

Use ε = 2σ or ε = 3σ.
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6. Testing stationarity & determinism

Possible methods to test stationarity:

1 Linear methods.
2 Nonlinear methods: recurrence plots, cross prediction error statistic,...

Cross prediction error statistic will be explained below (as a test for
determinsim)
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6. Testing stationarity & determinism

Possible methods to test determinism:

1 Visual methods: Return maps, recurrence plots, ...
2 Fingerprints: Power spectrum, Lyapunov exponent,...
3 Forbidden ordinal patterns
4 Kaplan-Glass test
5 Cross prediction error statistic
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6. Testing stationarity & determinism

6.1. Kaplan-Glass test.

Idea: Neighboring trajectories should point in about the same direction if
the system is deterministic.

1 Quantize the reconstructed state space with a box partition.
2 Each pass of the trajectory generates a unit vector ep determined by
the entry and exit points in/from the box k.

3 The average directional vector of box k is

Vk =
1
n

n

∑
p=1

e

where n is the number of total passes though the box k.
4 Let κ be the average length of all Vk/ kVkk: (i) κ � 0 random data;
(ii) κ � 1 deterministic data.
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6. Testing stationarity & determinism

6.2. Cross prediction error statistic.

Stationary deterministic systems are predictable, at least in the short term.
Let s0, s1, ..., sN be a test data set in a longer series.

Question: sN+1 =?

Idea: Suppose sn = s(xn), where x0, x1, ..., xN 2 Rd is deterministic

xn+1 = f (xn),
xk ' xN

�
) xN+1 = f (xN) ' f (xk) = xk+1

provided f is continuous.

Answer : sN+1 ' sk+1
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6.Testing stationarity & determinism

In practice though x0, x1, ..., xN are unknown. Use embedding vectors

s(n) = (sn�(m�1)τ, ..., sn�τ, sn)

to obtain states equivalent to the original ones. Thus:

s(N+ 1) ' s(k+ 1)

Even better:

s(N+ 1) ' 1
jBε(s(N))j ∑

s(k)2Bε(s(N))
s(k+ 1)

Prediction: The last component of s(N+ 1).
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6. Testing stationarity & determinism

Determinism test:

1 Split the data (sn)Nn=1 into I short segments Si (N/I � 500)
2 For all pair Si, Sj make predictions in Sj using data of Si.
3 Compute the rms of the predictions errors δij

4 If δij � average, then Si is a bad model for Sj

5 Compare (δij)min, (δij)max with the average

The matrix δij is usually color-coded and plotted.
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6. Testing stationarity & determinism

Illustration3.

3M. Perc, Eur. J. Phys. 26 (2005) 757
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7. Surrogate data testing

Chaotic systems mimic (white and colored) noise.

Random systems with nonuniform power spectrum can mimic chaos.

Recommendation. Test conclusions about whether a time series is
chaotic with surrogate data4.

Surrogate data are designed to mimic the statistical properties of chaotic
data but with determinism removed.

4T. Schreiber and A. Schmitz, Physica A (2000) 346.
J.M. Amigó (CIO) Nonlinear time series analysis 39 / 41



7. Surrogate data testing

1 Surrogate data with the same probability distribution: shu­ e the
data.

2 Surrogate data with the same power spectrum: use a surrogate series
Y = (yn)Nn=1 with the same Fourier amplitudes but with random
phases,

yn =
a0

2
+

N/2

∑
ν=1

p
Sν sin 2π

�νn
N
+ rν

�
,

where rν are N/2 uniform random numbers chosen from 0 � rν < 1.

Note. p(Y) tends to be nearly Gaussian.
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